WILEY

Using Cyclin-dependent Kinases 4/6 Inhibitors to Treat Hormone Receptorpositive Advanced Breast Cancer

Clinical management of adverse events and disease progression following treatment

Hormone receptor (HR)-positive HER2-negative breast cancer (BC)

- Most prevalent type of cancer (70%)¹ Risk of recurrence highest in 0–2 years²
- Adjuvant endocrine therapy (ET) reduces disease recurrence and mortality^{1,3}

• Selective estrogen receptor (ER)		
modulators (SERMis)		
Example: Oral tamoxifen	letrozole, and exemestane	Example: Intramuscular fulvestrant

Sensitivity to ET governs relapse and survival²

Classification	Time of relapse	Median overall survival	
Primary endocrine-resistant	Within 0–2 years of ET	27.2 months	
Secondary endocrine-resistant	After 2 years /within 1 year of completing ET	38.4 months	
Endocrine sensitive	>1 year of adjuvant ET completion/ no prior ET exposure	43.2 months	

• Primary endocrine-resistant group has the worst prognosis

• Patients are relatively younger with frequent visceral relapses, e.g. liver metastases

Approximately, 40% of patients experience relapse due to acquired resistance to ET^{2,4}

Overcoming endocrine resistance with cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors (CDK4/6i)

CDK4/6, along with cyclin D1, control the G1-S phase transition of the cell cycle⁵

Acquired resistance to ET is associated with dependence on cyclin D1 and CDK4/66 -

S1	S2				
 High expression of cyclin D1 in HR+ BC cells⁷ Direct transcriptional target of ER Induced by RTK and oncogenic signalling 	Hormone-independent activation of ER by cyclin D1 ⁸				
 Small molecules that bind to the ATP-binding pocket of CDK4/6, inactivate the cyclin D-CDK4/6 complex, prevent phosphorylation of retinoblastoma protein, and induce cell cycle arrest⁶ CDK4/6i, in combination with ET, are approved for clinical use in advanced-stage HR+ BC and as first-line therapy, in combination with aromatase inhibitors (AI), in high-risk early-stage BC⁷ 					
Abemaciclib Palbociclib Palbociclib	Ribociclib —— Dalpiciclib (approved in China)				

*Abbreviations: ATP: Adenosine triphosphate; EGFR: Epidermal growth factor receptor; ER: Estrogen receptor; HER2: Human epidermal growth factor 2; RTK: Receptor tyrosine kinase

Benefits of CDK4/6i in metastatic BC⁵

Multiple randomised clinical trials show prolonged PFS (in months) with CDK4/6i treatment

The CDK4/6i have similar efficacy but differ in their toxicity profiles Adverse events (AEs) associated with the use of CDK4/6i^{12,13}

Haematologic AEs

• Palbociclib and ribociclib – Asymptomatic neutropenia

Non-haematologic AEs

- Abemaciclib causes predominantly gastrointestinal toxicity, entailing grade 1–2 diarrhoea, fatigue, and abdominal pain
- In contrast to palbociclib, both abemaciclib and ribociclib cause hepatotoxicity
- Ribociclib prolongs QTc in <5% of patients necessitating ECG monitoring during the first two cycles
- Ribociclib confers a higher risk of respiratory injury

*Abbreviations: ECG: Electrocardiogram; PFS: Progression-free survival; QTc: QT interval

Guidelines for clinical management of CDK4/6i treatment-related AEs¹²⁻¹⁴

Neutropenia is the result of the cytostatic effect of CDK6 inhibition and is reversible

Clinical management

Monitor blood counts prior to initiation therapy

- Consider dose reduction in cases of:
- Recurrent uncomplicated Grade 3 neutropenia
- Prolonged (>1 week) recovery from Grade 3 neutropenia
- Febrile neutropenia recovered to Grade 2

Venus thromboembolism

Abemaciclib + hormone therapy: 2% Hormone therapy alone: 0.5% Risk ratio: 2.62

Clinical management

Primarily treated with anti-coagulants

Diarrhoea

- **Clinical management**
- Treat with antidiarrheal agents like loperamide
- Recommend increasing fluid intake and avoiding lactose and alcohol consumption
- · Consider suspending the dose for Grade 2 or higher symptoms
 - Grade 3 or 4 may require hospitalisation

 \bigotimes AEs are effectively managed by supportive medications and/or dose adjustments, with no detriment to PFS

Impact of CDK4/6i treatment on quality of life (QoL)^{15,16}

Overall, the addition of CDK4/6i to ET does not worsen patient HR-QoL • Positive trend towards pain improvement

Exception: Gastrointestinal toxicities influence HR-QoL of patients treated with abemaciclib

Impact of age on CDK4/6i efficacy^{17,18}

- Given higher comorbidities, older patients may consider QoL as important or even more important than survival
- CDK4/6i + ET is equally effective in older patients
- Older patients experience similar to slightly increased toxicity than younger patients

Patients with metastatic BC will eventually progress on the combination therapy due to genetically acquired resistance to ET, CDK4/6i, or both

MONALEESSA -2, -3, -7

Ribociclib vs placebo

• *RB1* loss or mutation

- Frequency of mutations in genes ESR1, RB1, FAT3, and TET2 higher at end-of-treatment
- Percentage of patients with high total mutational burden¹⁹ (>10 mutation/MB) increased at end-oftreatment in ribociclib arm vs placebo

Mechanisms of resistance to combination CDK4/6i and ET²⁰ Upregulation of CDK6/cyclin D1

• Upregulation of CDK2/ cyclin E1 (CCNE1) • PI3K/AKT pathway alteration

• Alterations in RAS/MAPK pathway

*Abbreviations: HR-QoL: Health-related quality of life; QTcF: QT interval corrected for heart rate using the Fridericia formula

Visit https://breastcancer.knowledgehub.wiley.com/pt-br/ for additional resources

Severe lung inflammation reported in treatment with all three CDK4/6i

Clinical management

- Regular monitoring for symptoms of ILD or pneumonitis (hypoxia, cough, dyspnea)
- · Suspend or discontinue treatment if Grade >2 symptoms appear and/or worsen

QTcF prolongation

Prolongation of the QT interval associated with palbociclib and ribociclib treatment is dose-dependent and clinically uncomplicated **Clinical management**

Review concomitant medications that further increase the risk of QTcF prolongation

rangutic strategies following progression on CDKA/6i therapy²⁰

	MAINTAIN (PFS in months)	PACE	(palbociclib + fulvestrant (SERD) + avelumab)
5.29 - Ribo	ciclib + switch ET 4.	.8	Fulvestrant 4.6 - F+palbociclib
2.76 Place • Cont swite	ebo + switch ET inuing with CDK4/6i beyond progression; ching CDK4/6i has added advantage	.1 -	F+P+avelumab • Addition of immunotherapy benefits PFS
DESTINY-Brea	ast04 (antibody-drug conjugate anti-HER2)	TROP	PiCS-02 (antibody-drug conjugate anti-Trop2)
10.1 Trast	tuzumab deruxtecan 5.	.5 -	Sacituzumab govitecan
5.4 - TPC	4	.0 -	ТРС
	PADA-1 (ET) ²¹ SE	ERENA	-2 (oral SERDs in patients with ESR1 mutations) ²¹
11.9 - Fulve	estrant (ET) + palbociclib	.2	Camizestrant
5.7 Al + j	palbociclib 3.	.7 -1	Fulvestrant
EMERALD	O (ET in patients with <i>ESR1</i> mutation) ²² CA (PFS rate)	Pitello	o-291: Capivasertib in patients with AKT pathway alterations ²¹
34.3% - Elace	estrant 10	.3 -	Capivasertib + fulvestrant
20.4% - ET (S	ERD of choice) 4.	.8 -4	Placebo + fulvestrant
SOLAR-1: Alp	pelisib in patients with <i>PIK3CA</i> -mutation ²¹	NAVO1	20: Inavolisib in patients with <i>PIK3CA</i> -mutation ²¹
11.0 Alpe	lisib + fulvestrant	5	Inavolisib + palbociclib + fulvestrant
5.7 - Place	ebo + fulvestrant 7	.3	 Placebo + palbociclib + fulvestrant Early reduction in <i>PIK3CA</i> circulating tumour DNA (ctDNA) in plasma samples from patients treated with palbociclib and fulvestrant, strongly predicts improved PFS²³

Key messages

- Combination of CDK4/6i and ET prolongs PFS in patients with advanced HR+ HER2-BC
- R Dose reductions allow control of CDK4/6i treatment-related adverse events without compromising efficacy and preserve the patient's QoL
- Ŕ Monitoring the presence of acquired genetic mutations within the circulating tumour DNA pool guides targeted therapeutic approaches following disease progression on CDK4/6i

References

- . Patel, R., Klein, P., Tiersten, A., & Sparano, J. A. (2023). An emerging generation of endocrine therapies in breast cancer: A clinical perspective. *NPJ Breast Cancer*, 9(1). Lambertini, M., Blondeaux, E., Bisagni, G., Mura, S., De Placido, S., De Laurentiis, M., ... & Del Mastro, L. (2023). Prognostic and clinical impact of the endocrine resistance/sensitivity classification according to international consensus guidelines for advanced breast cancer: An individual patient-level analysis from the Mammella Interforuppo (MIG) and Gruppo Italiano Mammella [GIN] studies. *EUInterConderdines* (M. J. Godwin, J., Gray, R., Clarke, M., Cutter, D. J., Darby, S. C., ... & Petó, R. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level analysis of randomised trials. *Lancet*, 378(9793),
- Davies, K.J., Godwin, J., Gray, R., Clarke, M., Cutter, D. J., Darby, S. C., ... & Pető, R. (2011). Relevance of breast cancer hormone rece 771–784.
 Hanker, A. B., Sudhan, D. R., & Arteaga, C. L. (2020). Overcoming endocrine resistance in breast cancer. *Cancer Cell*, 37(4), 496–513.

- Hanker, A. B., Sudhan, D. R., & Arteaga, C. L. (2020). Overcoming endocrine resistance in breast cancer. *Cancer Cell*, 37(4), 496–513.
 Lee, J. S., Hackbart, H., Cui, X., & Yuan, Y. (2023). CDK4/and CDK6 kinases: From basic science in hormone receptor-positive metastatic breast cancer: Translational research, clinical trials, and future directions. *International Journal of Molecular Science*, 24(14), 11791.
 Fassl, A., Geng, Y., & Sicinkis, P. (2022). CDK4 and CDK6 kinases: From basic science to cancer therapy. *Science*, 375(6):6777.
 Zwijsen, R., Wientjens, E., Klompmaker, R., Van Der Sman, J., Bernards, R., & Michalides, R. (1997). CDK-independent activation of estrogen receptor by cyclin D1. *Cell*, 88(3), 405–415.
 Onesti, C. E., & Jerusalem, G. (2020). CDK4/6 inhibitors in breast cancer: Differences in toxicity profiles and impact on agent choice. A systematic review and meta-analysis. *Expert Review of Anticancer Therapy*, 21(3), 283–298.
 Xu, B., Zhang, Q., Zhang, P., Hux, X., Li, W., Tong, Z., ... & Zou, J. (2022). DIA16 Dalpiciclib plus fulvestrant in hormone receptor-positive and HER2-negative advanced breast cancer. (DAWNA-2): A phase Ill trial. *Annols of Oncology*, 33, 51384–51385.
 Xu, B., Zhang, Q., Zhang, P., Hux, X., Li, W., Tong, Z., ... & Zou, J. (2021). Dalpiciclib or placebo plus fulvestrant in hormone receptor-positive and HER2-negative advanced breast cancer. *NPJ Breast Cancer*, 9(1).
 Grinshpun, A., Tolaney, S., M., Burstein, H., J., Jeselsohn, R., & Mayer, E. L. (2023). The dilemma of selecting a first line (Tor HR*/HER2-negative endotatic breast cancer. *NPJ Breast Cancer*, 9(1).
 Mastrantoni, L., Orlandi, A., Palazzo, A., Garufi, G., Fabi, A., Daniele, G., ... & Bria, E. (2023). The likelihood of being helped or harmed as a patient-centred tool to assess cyclin dependent kinase 4/i6 inhibitors clinical impact and safety in metastatic breast cancer: A systematic review and s

- Mastrantoni, L., Orlandi, A., Palazzo, A., Garuti, G., Fabi, A., Daniele, G., and Bria, E. (2023). The likelihood of being helped or harmed as a patient-centred tool to assess cyclin dependent kinase 4/6 inhibitors clinical impact and safety in metastatic breast cancer: A systematic review and sensitivity-analysis. *EclinicalMedicine*, 56, 101824.
 Rugo, H. S., Huober, J., Garcia-Sáenz, J. Á., Masuda, N., Sohn, J., André, Y., ... & Goetz, M. P. (2020). Management of abemaciclib-associated adverse events in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: *A medical Oncology*, *10*, 175883591879332.
 Thill, M., & Schmidt, M. (2018). Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. *Therapeutic Advances in Medical Oncology*, *10*, 175883591879332.
 Rugo, H. S., Harmer, V., O'Shaughnessy, J., Jhaveri, K., Tolaney, S. M., Cardoso, F., ... & Bardia, A. (2020). Health-related quality of life with ribociclib versus abemaciclib as first-line treatment of HR+/HER2- advanced breast cancer: A matching-adjusted indirect comparison. *Therapeutic Advances* in *Medical Oncology*, *15*, 17588359211528.
 Harbeck, N., Franke, F., Villanueva-Vázquez, R., Lu, Y., Tripathy, D., Chow, L. W. C., ... & Bardia, A. (2020). Health-related quality of life in premenopausal women with hormone-receptor-positive, HER2-negative advanced breast cancer: Young International Society of Geriatric Oncology review paper. *Therapeutic Advances in Medical Oncology*, *10*, 175883592031528.
 Battisti, N. M. L., De Glas, N. S., Sedri, N. S., Joh, K. P., Lipostis, G., Soto-Pérez-de-Cells, E., ... & Ring, A. (2018). Use of cyclin-dependent kinase *4/6* (DK4/6) inhibitors in older patients with ER-positive HER2-negative breast cancer: Young International Society of Geriatric Oncology review paper. *Therapeutic Advances in Medical Oncology*, *10*, 17588359

